
Ding Zhao

Assistant Professor

Carnegie Mellon University

2022 @ Ding Zhao

Trustworthy AI Autonomy

M2-2: Model-based decision making

Ding Zhao | CMU

Plan for today
• Model-based control

• LQR, iLQR, MPC

• Model-based reinforcement learning

• Neural network based method

• Local (linearized) model

• Planning: Cross Entropy Method

• Gaussian process-based Reinforcement learning (next lecture)

2

Ding Zhao | CMU

Recap: On-policy vs off-policy
• Policy optimization is almost always performed on-policy, which means that each

update only uses data collected while acting according to the most recent version of the
policy. The historical data collected with very old policy is not used. They can be used
with both continuous and discrete states. Using gradient, they converge to a local
minima of

• Q-learning, e.g., DQN, is almost always performed off-policy, which means that each
update can use data collected during the whole training history, regardless of what policy
the agent was choosing to explore the environment. Therefore, it is more sampling
efficient. No guarantee of convergence.

J(θ)

3https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

(Lec 8) (Lec 8)

Ding Zhao | CMU

Recap: MDP/Reinforcement Learning

4

s0 s1 s2 s3

r0 r1 r2 r3

a0 a1 a2

p

p

pp

p p

r r r

rrr

r

πππ
• Instead of asking for

demos, we only request a
single digit number to
indicate the level of
happiness - reward.

rt

st+1 ∼ p (⋅ |st , at)
at ∼ π (⋅ |st)
rt ∼ r (⋅ |st , at)Markov Decision Process

Here is called the modelp(st+1 |st, at)

Ding Zhao | CMU

How to get the model?
• Often we do know the dynamics

• Well-studied systems, e.g., automotive

• Optimal control

5https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html

Ding Zhao | CMU

Where to get the model?
• Often we do know the dynamics

• Well-studied systems, e.g., automotive

• Optimal control

• We know the structure of the dynamics
but need to fit some parameters

• System identification: fit unknown
parameters of a known model
structure, e.g., estimation of the road
friction, abrupt changes

• Adaptive control: the model may not be
accurately estimated but the control
error vanishes

6https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html

Ding Zhao | CMU

Where to get the model?
• We do know the dynamics

• Well-studied systems, e.g., automotive

• Optimal control

• We know the structure of the dynamics but need to fit some parameters

• System identification – fit unknown parameters of a known model, e.g.
estimation of the road friction, abrupt changes

• Adaptive control: the model may not be accurate but the control error vanishes

• We can learn the dynamics

• Model-based reinforcement learning: Fit a general-purpose model for
 p(st+1 |st, at)

7

Ding Zhao | CMU

Aside: notation

8http://rail.eecs.berkeley.edu/deeprlcourse/

Ding Zhao | CMU

(Finite Horizon Discrete-Time) Linear Quadratic Regulator (LQR)

• Design control policy to minimize the cost function.

where , subject to the system dynamics

• It is found that the optimal control solution follows an elegant format

• where is a constant only dependent on ,

J0,N =
1
2

x(N)TSNx(N) +
1
2

N−1

∑
k=0

(x(k)TQx(k) + u(k)TRu(k))

SN, Q, R ≥ 0

x(k + 1) = Ax(k) + Bu(k)

u*(k) = Kkx(k)

Kk A, B, S, Q, R
SN ⇒ KN−1 ⇒ SN−1 ⇒ KN−2 ⇒ SN−2 ⇒ … ⇒ S0(= J*0,N)

Kk = − (R + BTSk+1B)−1BTSk+1A, Sk = (A + BKk)TSk+1(A + BKk) + Q + KT
k RKk

9

min Jk,N = J*k,N = 1
2 x(k)TSkx(k)

https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html

Ding Zhao | CMU

(FH-DT) LQR vs MPC
• (Linear) Modal Predictive

Control or "Receding
Horizon Control

• Calculate ,
but only use and
recalculate

in
the next step. Essentially,
it is a closed loop version
of LQR, therefore, it
could be more robust by
increasing computation
budget.

u*(k : k + N)
u*(k)

u*(k + 1 : k + N + 1)

10

Ding Zhao | CMU

Model Predictive Control

11https://www.youtube.com/watch?v=_sBBaNYex3E

Atlas uses its whole body --
legs, arms, torso -- to
perform a sequence of
dynamic maneuvers that
form a gymnastic routine.
We created the maneuvers
using new techniques that
streamline the development
process. First, an
optimization algorithm
transforms high-level
descriptions of each
maneuver into dynamically-
feasible reference motions.
Then Atlas tracks the
motions using a model
predictive controller that
smoothly blends from one
maneuver to the next.
Using this approach, we
developed the routine
significantly faster than
previous Atlas routines,
with a performance
success rate of about 80%.

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E

Ding Zhao | CMU

iterative LQR (iLQR)

12https://www.youtube.com/watch?v=anIsw2-Lbco

https://www.youtube.com/watch?v=anIsw2-Lbco
https://www.youtube.com/watch?v=anIsw2-Lbco

Ding Zhao | CMU

iterative LQR (iLQR)
• Approximate a nonlinear system as a linear-quadratic system at , with Taylor

expansion

 ,

• Run LQR with state and action . Then rerun the linearization to update the
model.

x̃t ũt

xt+1 = f (xt, ut) ≈ f (x̃t, ũt) + ∇xt,ut
f (x̃t, ũt) [xt − x̃t

ut − ũt]
c (xt, ut) ≈ c (x̃t, ũt) + ∇xtut

c (x̃t, ũt) [xt − x̃t
ut − ũt] + 1

2 [xt − x̃t
ut − ũt]

T

∇2
x,ut

c (x̃t, ũt) [xt − x̃t
ut − ũt]

δxt = xt − x̃t δxt+1 = f (xt, ut) − f (x̃t, ũt)
δut = ut − ũt

δxt δut

13

Ding Zhao | CMU

Case study: nonlinear model-predictive control with iLQR

14

Ding Zhao | CMU

Model-based Reinforcement Learning

15

Modeling

Action

Sensing
𝒟 = {st, at}i

Environment

Estimate

Supervised learning/
regression

p(st+1 |st, at)

Optimize

Backpropogation with

at ∼ πθ(⋅ |st)
p

Ding Zhao | CMU

What kind of models can we learn?

16

Neural networks Stochastic functions

(Gaussian Processes)

Hierarchical /modular structures

Pro: very expressive, can
take the advantage of rich
data

Con: not so good in low
data regimes/rare events,
lack of interpretation

st+1 = fϕ(st, at)

Pro: data efficient

Con: hard to model non-
smooth dynamics, slower
than NN when dataset is big

st+1 ∼ 𝒩(⋅ |st, at, 𝒟)
Pro: good interpretation, data
efficient

Con: hard to train

Nonparametric
Parametric

Ding Zhao | CMU

Reinforcement Learning - NN model-based

17

s0 s1 s2 s3

r0 r1 r2 r3

a0 a1 a2

f

f

ff

f f

r r r

rrr

r

πππ

1. Run base policy (e.g., random policy) to collect

2. Learn model by minimizing

3. Optimize using via backpropagate

4. Execute with policy , append new data to

πθ(0) (at ∣ st) 𝒟 = {(st, at, st+1)t=1:D}k

fϕ(i) ∑t ∥fϕ(i)(st, at) − st+1∥2

πθ(k) (at ∣ st) fϕ(i)

πθ(k) (at ∣ st) 𝒟k+1 𝒟

MB-NN-RL-1.0

Issue: we may over-rely on the
model, which could have safety
issues.

Planning helps to make the
model more trustworthy

Ding Zhao | CMU

Reinforcement Learning - NN model-based

18

1. Run base policy (e.g., random policy) to collect

2. Learn model by minimizing

3. Plan through to choose actions

4. Execute the first planned action, observe results states

5. Append to

πθ(0) (at ∣ st) 𝒟 = {(st, at, st+1)t=1:D}k

fϕ(i) ∑t ∥fϕ(i)(st, at) − st+1∥2

fϕ(i)(st, at)

st+1

(st, at, st+1) 𝒟

MB-NN-RL-2.0

Ding Zhao | CMU

How to do planning (for multi-steps)?
• Planning with linearized models (local model)

• i-LQR

• Planning with sampling based methods

• CEM, PETS

19

Ding Zhao | CMU

Case study: local models and iLQR

20

https://www.youtube.com/watch?v=mSzEyKaJTSU

Ding Zhao | CMU

Cross Entropy Method (Random Shooting)
Optimal planning:

,

Simplest method: randomly sample and pick the top actions

1. Pick from some distribution (e.g., uniform)

2. Choose based on

a1, …, aT = arg max J(a1, …, aT) A = arg max J(A)

A1, …, AN

Ai arg max J(A)

21

Ding Zhao | CMU

Case study: CEM with MPC

22

PE: Probabilistic Ensembles

TS: Trajectory Sampling

Ding Zhao | CMU

Safe RL with non-stationary environment (a shaking head)
Case study: planning with CEM

B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

Ding Zhao | CMU

What kind of models can we learn?

24

Neural networks Stochastic functions

(Gaussian Processes)

Hierarchical /modular structures

Pro: very expressive, can
take the advantage of rich
data

Con: not so good in low
data regimes/rare events,
lack of interpretation

st+1 = fϕ(st, at)

Pro: data efficient

Con: hard to model non-
smooth dynamics, slower
than NN when dataset is big

st+1 ∼ 𝒩(⋅ |st, at, 𝒟)
Pro: good interpretation, data
efficient

Con: hard to train

Nonparametric
Parametric

Ding Zhao | CMU

Neural network vs Gaussian processes
• Neural network

• very powerful to approximate
nonlinear functions

• Efficient training

• overfitting issues

• Gaussian processes

• approximate nonlinear functions

• provide sensible uncertainties

• a probability distribution upon a
set of functions

• adjust complexity with data size:
nonparametric

• may suffer from the curse of
dimension

25

Ding Zhao | CMU 26https://distill.pub/2019/visual-exploration-gaussian-processes/

Ding Zhao | CMU

Effect of model errors and benefit of GP
• The main reason why model-based RL are not widely used in real-world

application is that they can suffer severely from model errors, i.e., they
inherently assume that the learned model resembles the real environment
sufficiently accurately.

• Given a small data set of observed transitions (left), multiple transition
functions plausibly could have generated them (center).

27

Ding Zhao | CMU

Effect of model errors and benefit of GP
• The main reason why model-based RL are not widely used in real-world

application is that they can suffer severely from model errors, i.e., they
inherently assume that the learned model resembles the real environment
sufficiently accurately.

• Given a small data set of observed transitions (left), multiple transition
functions plausibly could have generated them (center).

• Choosing a single deterministic model has severe consequences: Long-term
predictions often leave the range of the training data in which case the
predictions become essentially arbitrary. However, the deterministic model
claims them with full confidence! By contrast, a probabilistic model places a
posterior distribution on plausible transition functions (right) and expresses
the level of uncertainty about the model itself.

28

Ding Zhao | CMU

PILCO algorithm

29M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for Data-Efficient Learning in Robotics and Control," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 37, no. 2, pp. 408-423, Feb. 2015.

https://www.youtube.com/watch?v=cLUCYPWi9Xo

Ding Zhao | CMU

• PILCO: Design policy to minimize the cost function

subject to the unknown system dynamics and noise :

• Model Learning: we use tuples denoted as as training inputs and
differences as training outputs (targets). The posterior GP is a one-step
prediction model, and the predicted successor state is Gaussian distribute

,

where the mean and variance of the GP prediction are

 ,

respectively, with , , , is the
kernel matrix with entries .

• Kernel: a positive semidefinite covariance function

With parameters length-scales , signal variance , and noise variance learned by max likelihood

Jπ(θ) = ∑T
t=0 𝔼xt

[c(xt)], x0 ∼ 𝒩(μ0, Σ0)

f w xt+1 = f(xt, ut) + w, w ∼ 𝒩(0, Σw)
(xt, ut) ∈ ℝD+F x̃ := [x⊤u⊤]⊤

Δt = xt+1 − xt ∈ ℝD

xt+1

p (xt+1 ∣ xt, ut) = 𝒩 (xt+1 ∣ μt+1, Σt+1) μt+1 = xt + 𝔼f [Δt], Σt+1 = varf [Δt]

𝔼f [Δt] = mf (x̃t) = k⊤
* (K + σ2

wI)−1 y varf [Δt] = k** − k⊤
* (K + σ2

wI)−1 k*

k* := k (X̃, x̃t), k** := k (x̃t, x̃t) X̃ = [x̃1, …, x̃n] y = [Δ1, …, Δn]⊤ K
Kij = k(x̃i, x̃j)

k(x̃p, x̃q) = σ2
f exp(− 1

2 (x̃p − x̃q)⊤Λ−1(x̃p − x̃q)) + δpqσ2
w

ℓi σ2
f σ2

w

30

Ding Zhao | CMU

GP-based RL in a real-world application

31Cutler, Mark, and Jonathan P. How. "Autonomous drifting using simulation-aided reinforcement learning." 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2016.

https://www.youtube.com/watch?v=opsmd5yuBF0

Ding Zhao | CMU

Challenges in model learning
• Under-fitting: If the model class is restricted (e.g., linear function or gaussian

process) we have under-modeling: we cannot represent complex dynamics,
e.g., contact dynamics that are not smooth. As a result, though we learn
faster than model free in the beginning, MBRL ends up having worse
asymptotic performance than model-free methods, that do not suffer from
model bias.

• Over-fitting: If the model class is very expressive (e.g., neural networks) the
model will overfit, especially in the beginning of training, where we have very
few samples

• Uncertainty/errors propagated and amplified through planning

32

Ding Zhao | CMU

Model-based vs Model free
• Model-based

 + data efficient in training

 + Possibility to transfer across
tasks

 + Increase interoperability

 - Do not optimize directly over
performance

 - Usually need domain knowledge
(overfitting/under-fitting)

 - Maybe hard to learn policy

• Model-free

 + Need little assumption

 + Efficient for learning complex
policy

 - Require a lot training data

 - Not transferable and lack of
interoperability

33
Widely used in safety-critical applications

Ding Zhao | CMU

Combine model-based and model-free

34https://distill.pub/2019/visual-exploration-gaussian-processes/

Ding Zhao | CMU

Popular RL algorithms

35https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Ding Zhao | CMU

Summary
• Model-based RL

• Choose the format of
the models

• Learn with
new data and pre-
defined models

• Replanning at each step
(iLQR or CEM)

p(st+1 |st, at)

36

Ding Zhao | CMU

Worth reading
• Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy

Search under Unknown Dynamics.

• a github repo https://github.com/anassinator/ilqr

• A Visual Exploration of Gaussian Processes

• https://distill.pub/2019/visual-exploration-gaussian-processes/

• M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for
Data-Efficient Learning in Robotics and Control," in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423, Feb.
2015.

37

https://github.com/anassinator/ilqr
https://distill.pub/2019/visual-exploration-gaussian-processes/

