Trustworthy AI Autonomy

M2-2: Model-based decision making

Carnegie
Mellon
University

Ding Zhao

Assistant Professor

Carnegie Mellon University

2022 @ Ding Zhao

Safe Al Lab @CMU

Plan for today

e Model-based control

* LQR, iLQR, MPC
 Model-based reinforcement learning
* Neural network based method
* Local (linearized) model
* Planning: Cross Entropy Method

* (Gaussian process-based Reinforcement learning (next lecture)

Ding Zhao | CMU

Recap: On-policy vs off-policy

* Policy optimization is almost always performed on-policy, which means that each
update only uses data collected while acting according to the most recent version of the
policy. The historical data collected with very old policy is not used. They can be used
with both continuous and discrete states. Using gradient, they converge to a local

minima of J(&)

* Q-learning, e.g., DQN, is almost always performed off-policy, which means that each
update can use data collected during the whole training history, regardless of what policy
the agent was choosing to explore the environment. Therefore, it is more sampling
efficient. No guarantee of convergence.

‘ Sample Efficient

Less
Sample Efficient

_ Off-policy i On-policy ' Evolutionary/
(1%'8 ?I?TI] g asf: ds) Q-learning Actor-critic Policy Gradient § gradient-free k
P (1 M time steps) (10 Mtime steps) § (100 M time steps) %
(Lec 8)

(Lec 8)

Dlng Zhao ‘ CMU https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

Recap: MDP/Reinforcement Learning

()
_ * |nstead of asking for
\ { D demos, we only request a
r @ r single digit number r, to
)) indicate the level of
G/ v happiness - reward.
. St+1Np('|St’at)
Agent a, ~ 71'(- \St)
sae reward Markov Decision Process [2°t°"
:S, A’ rl.Nr(.‘Sl-,at>

Here p(s,, | s,, a,) is called the model ,

Ding Zhao | CMU

How to get the model?

 Often we do know the dynamics

* Well-studied systems, e.g., automotive

* Optimal control

Cross-track error: 5.01352
Nearest waypoint: 2485
Percent complete: 30.5%

Figure 1: Bicycle model|2]

j;:f(a;,u,t) Tz = Ax + Bu

y = g(z,u,t) y=Cz+ Du
ey [EE 0 i 0
d dlg| [0 =L o —p4XbA)]), 2Cq
e W e T 1 p| T 0
R0 e P e R

a=alo) o o [+ 0 3] 1]+ os2 s

Ding Zhao | CMU https://safeai-lab.github.io/lcs-fall2020. htm

IOOOOI

https://safeai-lab.github.io/lcs-fall2020.html

Where to get the model?

 Often we do know the dynamics
* Well-studied systems, e.g., automotive
* Optimal control

« We know the structure of the dynamics
but need to fit some parameters

o System identification: fit unknown
parameters of a known model
structure, e.g., estimation of the road
friction, abrupt changes

» Adaptive control: the model may not be
accurately estimated but the control
error vanishes

Ding Zhao | CMU htps://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html

Where to get the model?

e We do know the dynamics
 Well-studied systems, e.g., automotive
* Optimal control
« We know the structure of the dynamics but need to fit some parameters

* System identification - fit unknown parameters of a known model, e.g.
estimation of the road friction, abrupt changes

* Adaptive control: the model may not be accurate but the control error vanishes
« We can learn the dynamics

 Model-based reinforcement learning: Fit a general-purpose model for
p(St+1 ‘ St, at)

Ding Zhao | CMU

Aside: notation

S; — state X; — state
a; — action u; — action
r(s,a) — reward function c(x,u) — cost function
r(s,a) = —c(x,u)
Richard Bellman Lev Pontryagin

Dlng Zhao ‘ CMU http://rail.eecs.berkeley.edu/deepricourse/

(Finite Horizon Discrete-Time) Linear Quadratic Regulator (LQR)

* Design control policy to minimize the cost function.

1 1 &
Toy = 3N Syx(N) + D (k) Qx(k) + u(k)” Ru(k))
k=0

where Sy, O, R > 0, subject to the system dynamics
x(k+ 1) = Ax(k) + Bu(k)
* |t is found that the optimal control solution follows an elegant format
w (k) = K x(k) minJ, y = Jity = 5300 Sx(k)

 where K is a constant only dependenton A, B, S, O, R,
SN = KN—I = SN—l = KN—2 = SN—Z > ... > SO(= J{)k’N)

K,=—-(R+B'S, B)'B'S,, AS, =(A+BK)'S,, (A+BK)+ QO+ K/!RK,

Ding Zhao | CMU https://safeai-lab.github.io/lcs-fall2020.htm

https://safeai-lab.github.io/lcs-fall2020.html

(FH-DT) LQR vs MPC

past future/prediction

Desired set-point

-
-
——--—-—
“
-—
“

-—
-
=l
-
o

Closed-loop state
(measured) A

i -1 Optimal input
====19 trajectory (time k)
|

----1

U 4
Closed-loop input

Re-optimal input

L ll;ajecmry (time k+1)

k k+1 k+p k+m
| Control horizon p i |

| Prediction horizon m E |

* (Linear) Modal Predictive
Control or "Receding
Horizon Control

» Calculate u™(k : k+ N),

but only use u*(k) and
recalculate
u*(k+1:k+ N+ 1)in
the next step. Essentially,
It Is a closed loop version
of LQR, therefore, it
could be more robust by

Increasing computation
budget.

10

Atlas uses its whole body --
= = — legs, arms, torso -- to
Model Predictive Control =R ... :qu.onc o
sl | dyYNamic maneuvers that
form a gymnastic routine.
We created the maneuvers
using new techniques that
streamline the development
process. First, an
optimization algorithm
transforms high-level
descriptions of each
maneuver into dynamically-
feasible reference motions.
Then Atlas tracks the
motions using a model
predictive controller that
smoothly blends from one
maneuver to the next.
Using this approach, we
developed the routine
significantly faster than
previous Atlas routines,
with a performance
success rate of about 80%.

11

Ding Zhao | CMU hitps://www.youtube.com/watch?v=_sBBaNYex3E

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E

iterative LQR (iLQR)

12

Dlng Zhao ‘ CMU https://www.youtube.com/watch?v=anlsw2-Lbco

https://www.youtube.com/watch?v=anIsw2-Lbco
https://www.youtube.com/watch?v=anIsw2-Lbco

iterative LQR (iLQR)

« Approximate a nonlinear system as a linear-quadratic system at x,, i, with Taylor

expansion
- . R B ¥
X1 = f (xt, ”t) ~f (xt, ”t) + VS (2 ”t) U, — il
[[
X, — X X, — X g X, — X
- o~ ~ ~ t Mt 1 t Mt ~ o~ t Mt
C (xt, ut) X C (xt, ut) + thutc (xt, ut) [S| t3 ~] Viutc (xt, ut) [~]
U, — U U, — U U, — U

OX, = X, — X;, O0X, =f(xt, ut) —f()’Zt, ﬂt)

ou, = u, — I,

 Run LQR with state ox, and action ou,. Then rerun the linearization to update the
model.

Ding Zhao | CMU 13

Case study: nonlinear model-predictive control with iLQR

Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization

Yuval Tassa, Tom Erez and Emanuel Todorov
University of Washington

every time step:
observe the state x;

. L t+T
use iILQR to plan uy, ..., ur to minimize Zt,"_:t c(xXy, uyr)

execute action uy, discard w1, ..., a7

Ding Zhao | CMU

14

Model-based Reinforcement Learning

Estimate p(s,, | s,, a,)

Modeling

Supervised learning/
regression

Sensing
D= {s,a,}

Optimize a, ~ my(- | s,)
Environment
‘ Backpropogation with p

Ding Zhao | CMU 15

What kind of models can we learn?

Neural networks

TTTTTTTTTTTTTTTTTTTTTTTTT

4 neurons 5 neurons 4 neurons 2 neurons

St+1 = f¢(St’ a,)
Pro: very expressive, can

take the advantage of rich
data

Con: not so good in low
data regimes/rare events,
lack of interpretation

Parametric
Ding Zhao | CMU

Stochastic functions
(Gaussian Processes)

St ~ N |5 a, D)
Pro: data efficient

Con: hard to model non-
smooth dynamics, slower
than NN when dataset is big

Nonparametric

Hierarchical /modular structures

B l

Pro: good interpretation, data
efficient

Con: hard to train

16

Reinforcement Learning - NN model- based

ON | MB-NN-RL-1.0 |

ﬂ f | Issue: we may over-rely on the |
i model, which could have safety ;

5|ssues

' Planning helps to make the |
‘ . model more trustworthy

1. Run base pollcy TT0) (at | St (e.g., random policy) to collect D = {(s,, d;, S, 1);=1-p } &

— 2. Learn model f, by minimizing Zt fpi (S @) — SH_IHZ

— 3. Optimize myu (at | St> using f¢(i) via backpropagate

— 4. Execute with policy (at | St), append new data &, | to &

Ding Zhao | CMU 1

Reinforcement Learning - NN model-based

1. Run base policy 7y (at | St> (e.g., random policy) to collect I = {(s,, a,, S;11)=1-p }

C o
- 2. Learn model f;,, by minimizing > |[fa(s; @) = $,41]]
— 3. Plan through f¢(,-)(st, a,) to choose actions

4. Execute the first planned action, observe results states s, 4

— 5. Append (s,,a,, S, 1) 10 D

Ding Zhao | CMU 18

How to do planning (for multi-steps)?

* Planning with linearized models (local model)
* -LQR
* Planning with sampling based methods

« CEM, PETS

Ding Zhao | CMU

19

Case study: local models and iLQR

Learning Contact-Rich Manipulation Skills with Guided Policy Search

autonomous execution

Sergey Levine, Nolan Wagener, Pieter Abbeel

Abstract— Autonomous learning of object manipulation skills
can enable robots to acquire rich behavioral repertoires that
scale to the variety of objects found in the real world. However,
current motion skill learning methods typically restrict the
behavior to a compact, low-dimensional representation, limiting
its expressiveness and generality. In this paper, we extend a
recently developed policy search method [1] and use it to learn
a range of dynamic manipulation behaviors with highly general
policy representations, without using known models or example
demonstrations. Our approach learns a set of trajectories for
the desired motion skill by using iteratively refitted time-varying
linear models, and then unifies these trajectories into a single
control policy that can generalize to new situations. To enable
this method to run on a real robot, we introduce several
improvements that reduce the sample count and automate
parameter selection. We show that our method can acquire
fast, fluent behaviors after only minutes of interaction time,
and can learn robust controllers for complex tasks, including
putting together a toy airplane, stacking tight-fitting lego blocks,
placing wooden rings onto tight-fitting pegs, inserting a shoe
tree into a shoe, and screwing bottle caps onto bottles.

[. INTRODUCTION

Autonomous acquisition of manipulation skills has the po-
tential to dramatically improve both the ease of deployment
of robotic platforms, in domains ranging from manufacturing
to household robotics, and the fluency and speed of the
robot’s motion. It is often much easier to specify what a
robot should do, by means of a compact cost function, than

—
e —

Fig. 1: PR2 learning to attach the wheels of a toy airplane.

In this paper, we show that a range of motion skills
can be learned using only general-purpose policy repre-
sentations. We use our recently developed policy search
algorithm [1], which combines a sample-efficient method for
learning linear-Gaussian controllers with the framework of
guided policy search, which allows multiple linear-Gaussian
controllers (trained, for example, from several initial states,
or under different conditions) to be used to train a single
nonlinear policy with any parameterization, including com-
plex, high-dimensional policies represented by large neural
networks. This policy can then generalize to a wider range
of conditions than the individual linear-Gaussian controllers.

We present several modifications to this method that
make it practical for deployment on a robotic platform.

20

https://www.youtube.com/watch?v=mSzEyKaJTSU

Cross Entropy Method (Random Shooting)

Optimal planning:
a,...,ap=argmaxJ(a,...,ar), A = argmax J(A)

Simplest method: randomly sample and pick the top actions

1. Pick Ay, ..., Ay from some distribution (e.g., uniform)

2. Choose A based on arg max J(A)

Ding Zhao | CMU

21

Deep Reinforcement Learning in a Handful of Trials

Case Stu dy: C E M With M PC using Probabilistic Dynamics Models

Kurtland Chua Roberto Calandra Rowan McAllister Sergey Levine
Berkeley Artificial Intelligence Research
University of California, Berkeley
{kchua, roberto.calandra, rmcallister, svlevine}@berkeley.edu

Dynamics Model Trajectory Propagation Planning via Model Predictive Control

o <

Algorithm 1 Our model-based MPC algorithm ‘PETS’: PE: Probabilistic Ensembles

1: Initialize data ID with a random controller for one trial.

2: for Trial £ = 1 to K do N : :
Train a PE dynamics model f given D. TS: TrajeCtO ry Sampl INg
for Time ¢ = 0O to TaskHorizon do
for Actions sampled a;.:+7 ~CEM(-), 1 to NSamples do
Propagate state particles s usin% TS and f|{DD, at.¢++7}.
Evaluate actions as ij{; = p—1T(87,ar)
Update CEM(-) distribution.
Execute first action a; (only) from optimal actions a;.; 7.

10: Record outcome: D < D U {s¢, a;, St+1}.

Ding Zhao | CMU

ORI ED

22

Case study: planning with CEM

Safe RL with non-stationary environment (a shaking head)

-
:

-
. ~
o « Syt

73

D Nng £n4do | UIViU B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021

What kind of models can we learn?

Neural networks

TTTTTTTTTTTTTTTTTTTTTTTTT

4 neurons 5 neurons 4 neurons 2 neurons

St+1 = f¢(St’ a,)
Pro: very expressive, can

take the advantage of rich
data

Con: not so good in low
data regimes/rare events,
lack of interpretation

Parametric
Ding Zhao | CMU

Stochastic functions
(Gaussian Processes)

St ~ N |5 a, D)
Pro: data efficient

Con: hard to model non-
smooth dynamics, slower
than NN when dataset is big

Nonparametric

Hierarchical /modular structures

B l

Pro: good interpretation, data
efficient

Con: hard to train

24

e Neural network

e very powerful to approximate
nonlinear functions

o Efficient training

e overfitting issues

Ding Zhao | CMU

Neural network vs Gaussian processes

e (Gaussian processes

approximate nonlinear functions
provide sensible uncertainties

a probability distribution upon a
set of functions

adjust complexity with data size:

nonparametric

may suffer from the curse of
dimension

25

A Visual Exploration of
Gaussian Processes

How to turn a collection of small building blocks into a versatile
tool for solving regression problems.

Regression is used to find a function (line)
that represents a set of data points as closely
as possible

A Gaussian process is a probabilistic

method that gives a confidence
for the predicted function

Dlng Zhao ‘ CMU https://distill.pub/2019/visual-exploration-gaussian-processes/ 26

Effect of model errors and benefit of GP

 The main reason why model-based RL are not widely used in real-world
application is that they can suffer severely from model errors, i.e., they
iInherently assume that the learned model resembles the real environment
sufficiently accurately.

* Given a small data set of observed transitions (left), multiple transition
functions plausibly could have generated them (center).

. \
2 2r -7 \ 2+ \ o
+ 7 / f\\\\ \\ > . \\ \".
X AN \ s AN
A\ X \ / /
3-o—l 34—: / / \\ f \ \\\ // / \\ / \\ :-o-l "“\ /‘/ ,r"‘ o /
- / \ W ," \ ,"
. O i + _ O ~ "/*: \\ / \/ L /// { ~ O -"‘- / /
— 4t ;A\ _/(/ / — [\ |
> + by \ / S~ /7 > \ /\
= + = - = = [+
\\ 7 - N 4 / \ / Il
+ \ /
N W\ ARY
\\\ / / = '-II \\ / ,’,
_o} .\ _of N _of Y S
¢
...

-5-4-3-2 -1 01)%345678910

-5-4-3-2 -1 01)%345678910

(X, U)

-5-4-3-2-1 01)%345678910

Fig. 1. Effect of model errors. Left: Small data set of observed transitions from an idealized one-dimensional representations of states and actions
(z¢,ut) to the next state x:+1 = f(x¢,ur). Center: Multiple plausible deterministic models. Right: Probabilistic model. The probabilistic model
describes the uncertainty about the latent function by a probability distribution on the set of all plausible transition functions. Predictions with
deterministic models are claimed with full confidence, while the probabilistic model expresses its predictive uncertainty by a probability distribution.

Ding Zhao | CMU

27

Effect of model errors and benefit of GP

o 2 2 -~ / AN 2
+ / 2\ ;o 3
VABANA \ -~
/ 7\ / N\
—~~ —~ / 4 \\\ ! /N 4 —~
= = : A T N\ >
— -
+ “3h / \ 7
— 0 i O // \\< / ;7\ g 0
> + > AR ~ 4 >
N N— \ / \ N
— + — ///\..\V/ Y, ——
+ N |
\\\ /
i, ~2 W, —2
+ W

5432101234567 8 910 5432101234567 8 910 5432101234586 78 910
(X, U,) (X, U,) (X, U,)

® Fig. 1. Effect of model errors. Left: Small data set of observed transitions from an idealized one-dimensional representations of states and actions
(z+,ut) to the next state x:+1 = f(xt,ut). Center: Multiple plausible deterministic models. Right: Probabilistic model. The probabilistic model
describes the uncertainty about the latent function by a probability distribution on the set of all plausible transition functions. Predictions with
deterministic models are claimed with full confidence, while the probabilistic model expresses its predictive uncertainty by a probability distribution.

 Choosing a single deterministic model has severe consequences: Long-term
predictions often leave the range of the training data in which case the
predictions become essentially arbitrary. However, the deterministic model
claims them with full confidence! By contrast, a probabilistic model places a
posterior distribution on plausible transition functions (right) and expresses
the level of uncertainty about the model itself.

Ding Zhao | CMU

28

PILCO algorithm

Algorithm 1 PILCO

1: init: Sample controller parameters 8 ~ N (0, I). Apply
random control signals and record data.
2: repeat
3: Learn probabilistic (GP) dynamics model, see Sec. 3.1,
using all data

4: repeat

5: Approximate inference for policy evaluation, see
Sec. 3.2: get J™(0), Eq. (9)—(11)

6: Gradient-based policy improvement, see Sec. 3.3:

get dJ7(0)/d0, Eq. (12)—(16)
7: Update parameters @ (e.g., CG or L-BFGS).
8: until convergence; return 0"
9: Set7* <+ w(0")
10: Apply 7* to system and record data
11: until task learned

low! sampling/control.frequency (2Hz).

D|ng Zh ao ‘ CM U M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for Data-Efficient Learning in Robotics and Control," in IEEE Transactions on Pattern Analysis and 2 9
Machine Intelligence, vol. 37, no. 2, pp. 408-423, Feb. 2015.

https://www.youtube.com/watch?v=cLUCYPWi9Xo

 PILCO: Design policy to minimize the cost function J*(@) = Ztho —Le(x)], xo ~ A (g, 20)

subject to the unknown system dynamics f and noise w: x,. | = f(x,,u) +w, w~ N (0, %)

* Model Learning: we use tuples (x,, u,) € | D+F denoted as ¥ := [x 'u']' as training inputs and
differences A, = x, L1 — X €l D as training outputs (targets). The posterior GP is a one-step
prediction model, and the predicted successor state x,_ ; is Gaussian distribute

P (xr+1 | x;, ”z) =N (xr+1 ‘ﬂt+1’2t+1)’ﬂt+l =X, T 5y [At]’ 24 = vary [At]
where the mean and variance of the GP prediction are

= [A] =m(%) =kl (K+621) "y, var[A] = ke =kl (K+621)" ki

~ o ~ _ _ T .
respectively, with k. := k (X, xt),k** =k (xt,xt), X = [xl, ...,xn] Yy = [Al, e, An] K is the
kernel matrix with entries K;; = k(¥;, X;).

* Kernel: a positive semidefinite covariance function

k%, %) = of exp(— (&, —) TA\(&, — %)) + 5,07
2

With parameters length-scales ¢, signal variance O, and noise variance Gv% learned by max likelihood

Ding Zhao | CMU 30

GP-based RL In a real-world application

D' Zh CM U Cutler, Mark, and Jonathan P. How. "Autonomous drifting using simulation-aided reinforcement learning." 2016 IEEE International Conference on Robotics and Automation 31
Ing ao (ICRA). IEEE, 2016

https://www.youtube.com/watch?v=opsmd5yuBF0

Challenges in model learning

» Under-fitting: If the model class is restricted (e.g., linear function or gaussian
process) we have under-modeling: we cannot represent complex dynamics,
e.dg., contact dynamics that are not smooth. As a result, though we learn
faster than model free in the beginning, MBRL ends up having worse
asymptotic performance than model-free methods, that do not suffer from

model bias.

* QOver-fitting: If the model class is very expressive (e.g., neural networks) the
model will overfit, especially in the beginning of training, where we have very

few samples

» Uncertainty/errors propagated and amplified through planning

Ding Zhao | CMU 32

Model-based vs Model free

 Model-based
+ data efficient in training

+ Possibility to transfer across
tasks

+ Increase interoperability

- Do not optimize directly over
performance

- Usually need domain knowledge
(overfitting/under-fitting)

- Maybe hard to learn policy

Widely used in safety-critical applications
Ding Zhao | CMU

 Model-free
+ Need little assumption

+ Efficient for learning complex
policy
- Require a lot training data

- Not transferable and lack of
iInteroperability

33

Combine model-based and model-free

5000
4000 1
L 30001
2
&, 2000+
1000
0] , , : :
0 1 hour 2 hours 3 hours 4 hours
Interaction Time
*
SOTA SOTA
Model-Based Model-Free
(2017) (2017)

Ding Zhao ‘ CMU https://distill.pub/2019/visual-exploration-gaussian-processes/

Cumulative Reward

Neural Network Dynamics
for Model-Based Deep Reinforcement Learning
with Model-Free Fine-Tuning

Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, Sergey Levine
University of California, Berkeley

Swimmer

T

Ol)

ol

i)

ol

20)

10) - - Mb
w— Mf
Mb-Mf (ours)

1() 1()* 1()° 10® 1()* 1()®
Steps

34

Popular RL algorithms

[Policy Gradient}—

/

\

A2C / A3C «—
PPO «—
TRPO «—

RL Algorithms

(

Model-Free RL

N

Model-Based RL

\

Given the Model

AlphaZero 1

—{ World Models}
4 N\

Ding Zhao | CMU

J

DDPG
2 —> C51 —> I2A
TD3 « \ :
) (" A 4
. —> QR-DQN —> MBMF
SAC REE - -
J ((
—> HER —> MBVE
. J .

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

35

Summary
e Model-based RL

Estimate p(s,,| s, a,)

Supervised learning/
regression

e Choose the format of
the models

Sensing
@ — {St’ at}i

o Learn p(s,,|s,, a,) with
new data and pre-
defined models

| Optimize a, ~ my(- | 5,)
Environment \

* Replanning at each step -
(iILQR or CEM)

Backpropogation with p

Ding Zhao | CMU 36

Worth reading

* Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy
Search under Unknown Dynamics.

e a github repo https://github.com/anassinator/ilqr

* A Visual Exploration of Gaussian Processes

o https://distill.pub/2019/visual-exploration-gaussian-processes/

« M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for
Data-Efficient Learning in Robotics and Control," in IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423, FeDb.

2015.

Ding Zhao | CMU

37

https://github.com/anassinator/ilqr
https://distill.pub/2019/visual-exploration-gaussian-processes/

