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Plan for today
• Model-based control


• LQR, iLQR, MPC


• Model-based reinforcement learning


• Neural network based method


• Local (linearized) model


• Planning: Cross Entropy Method


• Gaussian process-based Reinforcement learning (next lecture)
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Recap: On-policy vs off-policy
• Policy optimization is almost always performed on-policy, which means that each 

update only uses data collected while acting according to the most recent version of the 
policy. The historical data collected with very old policy is not used. They can be used 
with both continuous and discrete states. Using gradient, they converge to a local 
minima of 


• Q-learning, e.g., DQN, is almost always performed off-policy, which means that each 
update can use data collected during the whole training history, regardless of what policy 
the agent was choosing to explore the environment. Therefore, it is more sampling 
efficient. No guarantee of convergence.

J(θ)

3https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323

(Lec 8) (Lec 8)
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Recap: MDP/Reinforcement Learning
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• Instead of asking for 

demos, we only request a 
single digit number  to 
indicate the level of 
happiness - reward.








rt

st+1 ∼ p ( ⋅ |st , at)
at ∼ π ( ⋅ |st)
rt ∼ r ( ⋅ |st , at)Markov Decision Process

Here  is called the modelp(st+1 |st, at)
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How to get the model?
• Often we do know the dynamics  

• Well-studied systems, e.g., automotive


• Optimal control

5https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html
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Where to get the model?
• Often we do know the dynamics  

• Well-studied systems, e.g., automotive


• Optimal control 


• We know the structure of the dynamics 
but need to fit some parameters 

• System identification: fit unknown 
parameters of a known model 
structure, e.g., estimation of the road 
friction, abrupt changes


• Adaptive control: the model may not be 
accurately estimated but the control 
error vanishes

6https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html
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Where to get the model?
• We do know the dynamics 

• Well-studied systems, e.g., automotive


• Optimal control


• We know the structure of the dynamics but need to fit some parameters 

• System identification – fit unknown parameters of a known model, e.g. 
estimation of the road friction, abrupt changes


• Adaptive control: the model may not be accurate but the control error vanishes


• We can learn the dynamics 

• Model-based reinforcement learning: Fit a general-purpose model for 
 p(st+1 |st, at)

7
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Aside: notation

8http://rail.eecs.berkeley.edu/deeprlcourse/
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(Finite Horizon Discrete-Time) Linear Quadratic Regulator (LQR)

• Design control policy to minimize the cost function.


                          


where , subject to the system dynamics





• It is found that the optimal control solution follows an elegant format


                                                


• where  is a constant only dependent on , 



J0,N =
1
2

x(N)TSNx(N) +
1
2

N−1

∑
k=0

(x(k)TQx(k) + u(k)TRu(k))

SN, Q, R ≥ 0

x(k + 1) = Ax(k) + Bu(k)

u*(k) = Kkx(k)

Kk A, B, S, Q, R
SN ⇒ KN−1 ⇒ SN−1 ⇒ KN−2 ⇒ SN−2 ⇒ … ⇒ S0( = J*0,N)

Kk = − (R + BTSk+1B)−1BTSk+1A, Sk = (A + BKk)TSk+1(A + BKk) + Q + KT
k RKk

9

min Jk,N = J*k,N = 1
2 x(k)TSkx(k)

https://safeai-lab.github.io/lcs-fall2020.html

https://safeai-lab.github.io/lcs-fall2020.html
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(FH-DT) LQR vs MPC
• (Linear) Modal Predictive 

Control or "Receding 
Horizon Control


• Calculate , 
but only use  and 
recalculate 

in 
the next step. Essentially, 
it is a closed loop version 
of LQR, therefore, it 
could be more robust by 
increasing computation 
budget.

u*(k : k + N)
u*(k)

u*(k + 1 : k + N + 1)

10
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Model Predictive Control

11https://www.youtube.com/watch?v=_sBBaNYex3E

Atlas uses its whole body -- 
legs, arms, torso -- to 
perform a sequence of 
dynamic maneuvers that 
form a gymnastic routine.  
We created the maneuvers 
using new techniques that 
streamline the development 
process. First, an 
optimization algorithm 
transforms high-level 
descriptions of each 
maneuver into dynamically-
feasible reference motions.  
Then Atlas tracks the 
motions using a model 
predictive controller that 
smoothly blends from one 
maneuver to the next.  
Using this approach, we 
developed the routine 
significantly faster than 
previous Atlas routines, 
with a performance 
success rate of about 80%. 

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E
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iterative LQR (iLQR)

12https://www.youtube.com/watch?v=anIsw2-Lbco

https://www.youtube.com/watch?v=anIsw2-Lbco
https://www.youtube.com/watch?v=anIsw2-Lbco
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iterative LQR (iLQR)
• Approximate a nonlinear system as a linear-quadratic system at ,  with Taylor 

expansion








 ,    


 


• Run LQR with state  and action . Then rerun the linearization to update the 
model.

x̃t ũt

xt+1 = f (xt, ut) ≈ f (x̃t, ũt) + ∇xt,ut
f (x̃t, ũt) [xt − x̃t

ut − ũt]
c (xt, ut) ≈ c (x̃t, ũt) + ∇xtut

c (x̃t, ũt) [xt − x̃t
ut − ũt] + 1

2 [xt − x̃t
ut − ũt]

T

∇2
x,ut

c (x̃t, ũt) [xt − x̃t
ut − ũt]

δxt = xt − x̃t δxt+1 = f (xt, ut) − f (x̃t, ũt)
δut = ut − ũt

δxt δut

13
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Case study: nonlinear model-predictive control with iLQR

14
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Model-based Reinforcement Learning

15

         

               
Modeling 

          
Action 

Sensing 
𝒟 = {st, at}i

Environment

Estimate 


Supervised learning/
regression

p(st+1 |st, at)

Optimize 


Backpropogation with 

at ∼ πθ( ⋅ |st)
p
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What kind of models can we learn? 

16

Neural networks Stochastic functions

(Gaussian Processes)

Hierarchical /modular structures



Pro: very expressive, can 
take the advantage of rich 
data

Con: not so good in low 
data regimes/rare events, 
lack of interpretation

st+1 = fϕ(st, at) 

Pro: data efficient

Con: hard to model non-
smooth dynamics, slower 
than NN when dataset is big

st+1 ∼ 𝒩( ⋅ |st, at, 𝒟)
Pro: good interpretation, data 
efficient

Con: hard to train

Nonparametric
Parametric



Ding Zhao | CMU

Reinforcement Learning -  NN model-based
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1. Run base policy  (e.g., random policy ) to collect 


2. Learn model  by minimizing 


3. Optimize  using  via backpropagate


4. Execute with policy , append new data  to 

πθ(0) (at ∣ st) 𝒟 = {(st, at, st+1)t=1:D}k

fϕ(i) ∑t ∥fϕ(i)(st, at) − st+1∥2

πθ(k) (at ∣ st) fϕ(i)

πθ(k) (at ∣ st) 𝒟k+1 𝒟

MB-NN-RL-1.0

Issue: we may over-rely on the 
model, which could have safety 
issues.

Planning helps to make the 
model more trustworthy
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Reinforcement Learning -  NN model-based

18

1. Run base policy  (e.g., random policy ) to collect 


2. Learn model  by minimizing 


3. Plan through  to choose actions


4. Execute the first planned action, observe results states  


5. Append  to 

πθ(0) (at ∣ st) 𝒟 = {(st, at, st+1)t=1:D}k

fϕ(i) ∑t ∥fϕ(i)(st, at) − st+1∥2

fϕ(i)(st, at)

st+1

(st, at, st+1) 𝒟

MB-NN-RL-2.0
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How to do planning (for multi-steps)?
• Planning with linearized models (local model)


• i-LQR


• Planning with sampling based methods


• CEM, PETS

19
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Case study: local models and iLQR

20

https://www.youtube.com/watch?v=mSzEyKaJTSU
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Cross Entropy Method (Random Shooting)
Optimal planning:


,  


Simplest method: randomly sample and pick the top actions


1. Pick  from some distribution (e.g., uniform)


2. Choose  based on  

a1, …, aT = arg max J(a1, …, aT) A = arg max J(A)

A1, …, AN

Ai arg max J(A)

21
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Case study: CEM with MPC

22

PE: Probabilistic Ensembles 


TS: Trajectory Sampling 
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Safe RL with non-stationary environment (a shaking head)
Case study: planning with CEM

B. Chen et al., "Context-Aware Safe Reinforcement Learning for Non-Stationary Environments," 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021
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What kind of models can we learn? 

24

Neural networks Stochastic functions

(Gaussian Processes)

Hierarchical /modular structures



Pro: very expressive, can 
take the advantage of rich 
data

Con: not so good in low 
data regimes/rare events, 
lack of interpretation

st+1 = fϕ(st, at) 

Pro: data efficient

Con: hard to model non-
smooth dynamics, slower 
than NN when dataset is big

st+1 ∼ 𝒩( ⋅ |st, at, 𝒟)
Pro: good interpretation, data 
efficient

Con: hard to train

Nonparametric
Parametric
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Neural network vs Gaussian processes
• Neural network


• very powerful to approximate 
nonlinear functions


• Efficient training


• overfitting issues


• Gaussian processes


• approximate nonlinear functions


• provide sensible uncertainties


• a probability distribution upon a 
set of functions


• adjust complexity with data size: 
nonparametric


• may suffer from the curse of 
dimension

25
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Effect of model errors and benefit of GP
• The main reason why model-based RL are not widely used in real-world 

application is that they can suffer severely from model errors, i.e., they  
inherently assume that the learned model resembles the real environment 
sufficiently accurately.


• Given a small data set of observed transitions (left), multiple transition  
functions plausibly could have generated them (center).

27
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Effect of model errors and benefit of GP
• The main reason why model-based RL are not widely used in real-world 

application is that they can suffer severely from model errors, i.e., they  
inherently assume that the learned model resembles the real environment 
sufficiently accurately.


• Given a small data set of observed transitions (left), multiple transition  
functions plausibly could have generated them (center).


• Choosing a single deterministic model has severe consequences: Long-term 
predictions often leave the range of the training data in which case the 
predictions become essentially arbitrary. However, the deterministic model 
claims them with full confidence! By contrast, a probabilistic model places a 
posterior distribution on plausible transition functions (right) and expresses 
the level of uncertainty about the model itself.

28
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PILCO algorithm

29M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for Data-Efficient Learning in Robotics and Control," in IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 37, no. 2, pp. 408-423, Feb. 2015.

https://www.youtube.com/watch?v=cLUCYPWi9Xo
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• PILCO: Design policy to minimize the cost function  


subject to the unknown system dynamics  and noise : 


• Model Learning: we use tuples  denoted as  as training inputs and 
differences  as training outputs (targets). The posterior GP is a one-step 
prediction model, and the predicted successor state  is Gaussian distribute


, 

where the mean and variance of the GP prediction are 


 ,     


respectively, with , , ,  is the 
kernel matrix with entries . 

• Kernel: a positive semidefinite covariance function


 


With parameters length-scales , signal variance , and noise variance  learned by max likelihood

Jπ(θ) = ∑T
t=0 𝔼xt

[c(xt)], x0 ∼ 𝒩(μ0, Σ0)

f w xt+1 = f(xt, ut) + w, w ∼ 𝒩(0, Σw)
(xt, ut) ∈ ℝD+F x̃ := [x⊤u⊤]⊤

Δt = xt+1 − xt ∈ ℝD

xt+1

p (xt+1 ∣ xt, ut) = 𝒩 (xt+1 ∣ μt+1, Σt+1) μt+1 = xt + 𝔼f [Δt], Σt+1 = varf [Δt]

𝔼f [Δt] = mf (x̃t) = k⊤
* (K + σ2

wI)−1 y varf [Δt] = k** − k⊤
* (K + σ2

wI)−1 k*

k* := k (X̃, x̃t), k** := k (x̃t, x̃t) X̃ = [x̃1, …, x̃n] y = [Δ1, …, Δn]⊤ K
Kij = k(x̃i, x̃j)

k(x̃p, x̃q) = σ2
f exp(− 1

2 (x̃p − x̃q)⊤Λ−1(x̃p − x̃q)) + δpqσ2
w

ℓi σ2
f σ2

w

30
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GP-based RL in a real-world application

31Cutler, Mark, and Jonathan P. How. "Autonomous drifting using simulation-aided reinforcement learning." 2016 IEEE International Conference on Robotics and Automation 
(ICRA). IEEE, 2016.

https://www.youtube.com/watch?v=opsmd5yuBF0
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Challenges in model learning
• Under-fitting: If the model class is restricted (e.g., linear function or gaussian 

process) we have under-modeling: we cannot represent complex dynamics, 
e.g., contact dynamics that are not smooth. As a result, though we learn 
faster than model free in the beginning, MBRL ends up having worse 
asymptotic performance than model-free methods, that do not suffer from 
model bias.


• Over-fitting: If the model class is very expressive (e.g., neural networks) the 
model will overfit, especially in the beginning of training, where we have very 
few samples


• Uncertainty/errors propagated and amplified through planning

32
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Model-based vs Model free
• Model-based

  + data efficient in training

  + Possibility to transfer across 
tasks

  + Increase interoperability

  - Do not optimize directly over 
performance

  - Usually need domain knowledge 
(overfitting/under-fitting)

  - Maybe hard to learn policy


• Model-free

  + Need little assumption

  + Efficient for learning complex 
policy

  - Require a lot training data

  - Not transferable and lack of 
interoperability

33
Widely used in safety-critical applications
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Combine model-based and model-free

34https://distill.pub/2019/visual-exploration-gaussian-processes/
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Popular RL algorithms

35https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Summary
• Model-based RL


• Choose the format of 
the models


• Learn  with 
new data and pre-
defined models


• Replanning at each step 
(iLQR or CEM)

p(st+1 |st, at)

36
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Worth reading
• Levine, Abbeel. (2014). Learning Neural Network Policies with Guided Policy 

Search under Unknown Dynamics.


• a github repo https://github.com/anassinator/ilqr


• A Visual Exploration of Gaussian Processes


• https://distill.pub/2019/visual-exploration-gaussian-processes/


• M. P. Deisenroth, D. Fox and C. E. Rasmussen, "Gaussian Processes for 
Data-Efficient Learning in Robotics and Control," in IEEE Transactions on 
Pattern Analysis and Machine Intelligence, vol. 37, no. 2, pp. 408-423, Feb. 
2015.
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https://github.com/anassinator/ilqr
https://distill.pub/2019/visual-exploration-gaussian-processes/

